A clustering-based discretization for supervised learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Based on Similarity Metric Learning for Semi-Supervised Clustering

Semi-supervised clustering employs a small amount of labeled data to aid unsupervised learning. The focus of this paper is on Metric Learning, with particular interest in incorporating side information to make it semi-supervised. This study is primarily motivated by an application: face-image clustering. In the paper introduces metric learning and semi-supervised clustering, Similarity metric l...

متن کامل

Semi-supervised Zero-Shot Learning by a Clustering-based Approach

In some of object recognition problems, labeled data may not be available for all categories. Zero-shot learning utilizes auxiliary information (also called signatures) describing each category in order to find a classifier that can recognize samples from categories with no labeled instance. In this paper, we propose a novel semi-supervised zero-shot learning method that works on an embedding s...

متن کامل

Optimal Multiple Intervals Discretization of Continuous Attributes for Supervised Learning

5, av Pierre Mend&s-France 69676 BRON CEDEX FRANCE {zighed,rakotoma,ffeschet)@univ-lyon2.fr In this paper, we propose an extension of Fischer’s algorithm to compute the optimal discretization of a continuous variable in the context of supervised learning. Our algorithm is extremely performant since its only depends on the number of runs and not directly on the number of points of the sample dat...

متن کامل

Learning Kernels for Semi-Supervised Clustering

As a recent emerging technique, semi-supervised clustering has attracted significant research interest. Compared to traditional clustering algorithms, which only use unlabeled data, semi-supervised clustering employs both unlabeled and supervised data to obtain a partitioning that conforms more closely to the user's preferences. Several recent papers have discussed this problem (Cohn, Caruana, ...

متن کامل

Semi-Supervised Learning for Web Text Clustering

Supervised learning algorithms usually require large amounts of training data to learn reasonably accurate classifiers. Yet, for many text classification tasks, providing labeled training documents is expensive, while unlabeled documents are readily available in large quantities. Learning from both, labeled and unlabeled documents, in a semi-supervised framework is a promising approach to reduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2010

ISSN: 0167-7152

DOI: 10.1016/j.spl.2010.01.015